
CS 151 Review #5

ReviewReviewReviewReview

Increment and Decrement Operator Increment and Decrement Operator Increment and Decrement Operator Increment and Decrement Operator

To execute many algorithms we need to be able to add or subtract 1 from a given integer quantity. For example:

 count = count + 1; // what would happen if we use d ==
 // instead of = ?
 count += 1;

Both of these statements increment the value of count by 1. If we replace “+” with “- ” in the above code, then
both statements decrement the value of count by 1. C++ also provides an increment operator ++ and a
decrement operator -- to perform these tasks. There are two modes that can be used:

 count++; // increment operator in the postfix mod e
 count--; // decrement operator in the postfix mod e

 ++count; // increment operator in the prefix mode
 --count; // decrement operator in the prefix mode

The two increment statements both execute exactly the same. So do the decrement operators. What is the purpose
of having postfix and prefix modes? To answer this, consider the following code:

int age = 49;
if (age++ > 49)
 cout << "Congratulations - You have made it to the half-century"
 << " mark !" << endl;

In this code, the cout statement will not execute. The reason is that in the postfix mode the comparison between
age and 49 is made first. Then the value of age is incremented by one. Since 49 is not greater than 49, the if
conditional is false. Things are much different if we replace the postfix operator with the prefix operator:

int age = 49;
if (++age > 49)
 cout << " Congratulations - You have made it to th e half-century"
 << " mark !" << endl;

In this code age is incremented first. So its value is 50 when the comparison is made. The conditional statement is
true and the cout statement is executed.

The The The The while Loop Loop Loop Loop

Often in programming one needs a statement or block of statements to repeat during execution. This can be
accomplished using a loop. A loop is a control structure that causes repetition of code within a program. C++ has
three types of loops. The first we will consider is the while loop. The syntax is the following:

CS 151 Review #5

while (expression)
{
 statement_1;
 statement_2;

 :
 statement_n;
}

If there is only one statement, then the curly braces can be omitted. When a while loop is encountered during
execution, the expression is tested to see if it is true or false. The block of statements is repeated as long as the
expression is true. Consider the following:

Sample Program 5.1:

#include <iostream>
using namespace std;

int main()
{

int num = 5;
int numFac = 1;

while (num > 0)
{

numFac = numFac * num;
num––; // note the use of the decrement operator

 }

cout << " 5! = " << numFac << endl;

return 0;

}

This program computes 5! = 5 * 4 * 3 * 2 * 1 and then prints the result to the screen. Note how the while loop
controls the execution. Since num = 5 when the while loop is first encountered, the block of statements in the
body of the loop is executed at least once. In fact, the block is executed 5 times because of the decrement operator
which forces the value of num to decrease by one every time the block is executed. During the fifth iteration of
the loop num becomes 0, so the next time the expression is tested num > 0 is false and the loop is exited. Then
the cout statement is executed.

What do you think will happen if we eliminated the decrement operator num-- in the above code? The value
of num is always 5. This means that the expression num > 0 is always true! If we try to execute the modified
program, the result is an infinite loop, i.e., a block of code that will repeat forever. One must be very cautious
when using loops to ensure that the loop will terminate. Here is another example where the user may have trouble
with termination.

CS 151 Review #5

Sample Program 5.2:

#include <iostream>
using namespace std;

int main()
{

char letter = 'a';

while (letter != 'x')
{
 cout << "Please enter a letter" << endl;
 cin >> letter;
 cout << "The letter your entered is " << letter << endl;
}

return 0;

}

Note that this program requires input from the user during execution. Infinite loops can be avoided, but it would help
if the user knew that the 'x' character terminates the execution. Without this knowledge the user could
continually enter characters other than 'x' and never realize how to terminate the program. In the lab
assignments you will be asked to modify this program to make it more user friendly.

Counters Counters Counters Counters

Often a programmer needs to control the number of times a particular loop is repeated. One common way to
accomplish this is by using a counter. For example, suppose we want to find the average of five test scores. We
must first input and add the five scores. This can be done with a counter-controlled loop as shown in Sample
Program 5.3. Notice how the variable named test works as a counter. Also notice the use of a constant for the
number of tests. This is done so that the number of tests can easily be changed if we want a different number of
tests to be averaged.

Sample Program 5.3:

#include <iostream>
using namespace std;

const int NUMBEROFTESTS = 5;

int main()
{
 int score ; // the individual score read in
 float total = 0.0; // the total of the scores
 float average; // the average of the scores
 int test = 1; // counter that controls the loop

 while (test <= NUMBEROFTESTS) // Note that test i s 1 the first time
 // the expression is tested
 {
 cout << "Enter your score on test " << test << ": " << endl;
 cin >> score;

 total = total + score;

CS 151 Review #5

 test++;
 }

 average = total / NUMBEROFTESTS;

 cout << "Your average based on " << NUMBEROFTESTS
 << " test scores is " << average << endl;

 return 0;
}

Sample Program 5.3 can be made more flexible by adding an integer variable called numScores that would allow
the user to input the number of tests to be processed.

Sentinel Values Sentinel Values Sentinel Values Sentinel Values

We can also control the execution of a loop by using a sentinel value which is a special value that marks the end
of a list of values. In a variation of the previous program example, if we do not know exactly how many test scores
there are, we can input scores which are added to total until the sentinel value is input. Sample Program 5.4 revises
Sample Program 5.3 to control the loop with a sentinel value. The sentinel in this case is -1 since it is an invalid test
score. It does not make sense to use a sentinel between 0 and 100 since this is the range of valid test scores. Notice
that a counter is still used to keep track of the number of test scores entered, although it does not control the loop.
What happens if the first value the user enters is a -1?

Sample Program 5.4:

#include <iostream>
using namespace std;

int main()
{
 int score ; // the individual score read in
 float total = 0.0; // the total of the score s
 float average; // the average of the scores

int test = 1; // counter that controls the loop

cout << "Enter your score on test " << test
 << " (or -1 to exit): " << endl;

 cin >> score; // Read the 1st score

 while (score != -1) // While we have not enter ed the sentinel
 // (ending) value, do the loop

{
 total = total + score;
 test++;
 cout << "Enter your score on test " << test
 << " (or -1 to exit): " << endl;
 cin >> score; // Read the next score
}

CS 151 Review #5

if (test > 1) // If test = 1, no scores were enter ed
{
 average = total / (test - 1);

 cout << "Your average based on " << (test - 1)
 << " test scores is " << average << endl;
}

return 0;

}

Notice that the program asks for input just before the while loop begins and again as the last instruction in the
while loop. This is done so that the while loop can test for sentinel data. Often this is called priming the
read and is frequently implemented when sentinel data is used to end a loop.

Data Validation Data Validation Data Validation Data Validation

One nice application of the while loop is data validation. The user can input data (from the keyboard or a file)
and then a while loop tests to see if the value(s) is valid. The loop is skipped for all valid input but for invalid
input the loop is executed and prompts the user to enter new (valid) input. The following is an example of data
validation.

 cout << "Please input your choice of drink "
 << "(a number from 1 to 4 or 0 to quit)" << e ndl;
 cout << " 1 -Coffee" << endl
 << " 2 -Tea" << endl
 << " 3 -Coke" << endl
 << " 4 -Orange Juice" << endl << endl
 << " 0 -QUIT" << endl << endl;

 cin >> beverage;

 while (beverage < 0 || beverage > 4)
 {
 cout << "Valid choices are 0 - 4. Please re-enter : ";
 cin >> beverage;

 }

What type of invalid data does this code test for? If beverage is an integer variable, what happens if the user
enters the character ‘$’ or the float 2.9?

The The The The do-while Loop Loop Loop Loop

The while loop is a pre-test or top test loop. Since we test the expression before entering the loop, if the test
expression in the while loop is initially false, then no iterations of the loop will be executed. If the programmer
wants the loop to be executed at least once, then a post-test or bottom test loop should be used. C++ provides
the do-while loop for this purpose. A do-while loop is similar to a while loop except that the statements
inside the loop body are executed before the expression is tested. The format for a single statement in the loop body
is the following:

 do

 statement;
 while (expression);

Note that the statement must be executed once even if the expression is false. To see the difference between these
two loops consider the code

CS 151 Review #5

int num1 = 5;
int num2 = 7;

while (num2 < num1)
{

num1 = num1 + 1;
num2 = num2 - 1;

}

Here the statements num1=num1+1 and num2=num2-1 are never executed since the test expression num2 <
num1 is initially false. However, we get a different result using a do-while loop:

int num1 = 5;
int num2 = 7;

do
{
 num1 = num1 + 1;
 num2 = num2 - 1;
} while (num2 < num1);

In this code the statements num1=num1 + 1 and num2=num2-1 are executed exactly once. At this point
num1=6 and num2=6 so the expression num2 < num1 is false. Consequently, the program exits the loop and
moves to the next section of code. Also note that since we need a block of statements in the loop body, curly
braces must be placed around the statements. In Lab 5.2 you will see how do-while loops can be useful for
programs that involve a repeating menu.

The The The The for Loop Loop Loop Loop

The for loop is often used for applications that require a counter. For example, suppose we want to find the
average (mean) of the first n positive integers. By definition, this means that we need to add 1 + 2 + 3 + . . . + n
and then divide by n. Note this should just give us the value in the “middle” of the list 1, 2, ..., n. Since we know
exactly how many times we are performing a sum, the for loop is the natural choice.

The syntax for the for loop is the following:

for (initialization; test; update)
{

statement_1;
statement_2;
:
statement_n;

}

Notice that there are three expressions inside the parentheses of the for statement, separated by semicolons.

1. The initialization expression is typically used to initialize a counter that must have a starting value. This is
the first action performed by the loop and is done only once.

2. The test expression, as with the while and do-while loops, is used to control the execution of the loop.
As long as the test expression is true, the body of the for loop repeats. The for loop is a pre-test loop
which means that the test expression is evaluated before each iteration.

3. The update expression is executed at the end of each iteration. It typically increments or decrements the
counter. Now we are ready to add the first n positive integers and find their mean value.

Sample Program 5.5:

CS 151 Review #5

#include <iostream>
using namespace std;

int main()
{
 int value;
 int total = 0;
 int number;
 float mean;

cout << "Please enter a positive integer" << endl;
cin >> value;

if (value > 0)
{
 for (number = 1; number <= value; number++)
 {
 total = total + number;
 } // curly braces are optional since

 // there is only one statement

 mean = static_cast<float>(total) / value; // no te the use of the typecast
 // operator

 cout << "The mean average of the first " << value
 << " positive integers is " << mean << endl;

}
else
 cout << "Invalid input - integer must be positive" << endl;

return 0;

}

Note that the counter in the for loop of Sample Program 5.5 is number . It increments from 1 to value during
execution. There are several other features of this code that also need to be addressed. First of all, why is the
typecast operator needed to compute the mean? What do you think will happen if it is removed?

Finally, what would happen if we entered a float such as 2.99 instead of an integer? Lab 5.3 will demonstrate what
happens in these cases.

CS 151 Review #5

Nested Loops Nested Loops Nested Loops Nested Loops

Often programmers need to use a loop within a loop, or nested loops. Sample Program 5.6 below provides a
simple example of a nested loop. This program finds the averagenumber of hours per day spent programming by
each student over a three-day weekend. The outer loop controls the number of students and the inner loop allows
the user to enter the number of hours worked each of the three days for a given student. Note that the inner loop
is executed three times for each iteration of the outer loop.

Sample Program 5.6:

// This program finds the average time spent progra mming by a student each
// day over a three day period.

#include <iostream>
using namespace std;

int main()
{
 int numStudents;
 float numHours, total, average;
 int count1 = 0, count2 = 0; // these are the coun ters for the loops

cout << "This program will find the average number of hours a day"
 << " that each given student spent programming over a long weekend"
 << endl << endl;
cout << "How many students are there ?" << endl << endl;
cin >> numStudents;

for (count1 = 1; count1 <= numStudents; count1++)
{
 total = 0;

 for (count2 = 1; count2 <= 3; count2++)
 {

 cout << "Please enter the number of hours worked by student "
 << count1 << " on day " << count2 << "." << endl;
 cin >> numHours;

 total = total + numHours;
 }

 average = total / 3;

 cout << endl;

cout << "The average number of hours per day spent programming by"
 << " student " << count1 <<" is " << average
 << endl << endl << endl;

 }

 return 0;
}

In Lab 5.4 you will be asked to modify this program to make it more flexible.

Review #5 CS 151 SEC# ___________ Name _____________________________

Fill-in-the-Blank Questions

1) A block of code that repeats forever is called ____________________.

2) To keep track of the number of times a particular loop is repeated, one can use a(n)

____________________.

3) An event controlled loop that is always executed at least once is the

4) An event controlled loop that is not guaranteed to execute at least once is the

5) In the conditional if(++number < 9) , the comparison number < 9 is made

_____________________ and number is incremented __________________. (Choose first

or second for each blank.)

6) In the conditional if(number++ < 9) , the comparison number < 9 is made

_____________________ and number is incremented __________________. (Choose first

or second for each blank.)

7) A loop within a loop is called a _______________________________.

8) To write out the first 12 positive integers and their cubes, one should use a(n)

____________________ loop.

9) A(n) __________________ value is used to indicate the end of a list of values. It can be used

to control a while loop.

10) In a nested loop the ___________________ loop goes through all of its iterations for each

iteration of the ____________________ loop. (Choose inner or outer for each blank.)

